Vacuum consolidation and its combination with embankment loading

Author:

Chai J -C,Carter J P,Hayashi S

Abstract

A method is proposed for determining the optimum penetration depth of prefabricated vertical drains (PVDs) in cases where vacuum consolidation is combined with the use of PVDs in a clayey deposit with two-way drainage. The advantages of combining vacuum pressure with embankment loading are discussed in terms of reducing preloading-induced lateral displacement of the subsoil, increasing the effective surcharge loading, and reducing construction time in the case of road construction. A vacuum consolidation project conducted in Saga, Japan, is described, and the results from a fully instrumented test section are presented and analyzed using a two-dimensional finite element approach. The numerical simulations compare well with the field measurements. The validated numerical approach is then used to examine the response of soft subsoil subjected to vacuum consolidation. The results confirm the usefulness of the proposed method for determining the optimum penetration depth of PVDs and the advantages of combining vacuum pressure with embankment loading.Key words: vacuum consolidation, preloading, prefabricated vertical drain, FEM analysis, embankment.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 112 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3