An energy-saving loading strategy: cyclic vacuum preloading treatment of soft ground

Author:

Wang Jiahao1,Shi Li1ORCID,Sun Honglei1,Cai Yuanqiang1ORCID,Yu Yanming2

Affiliation:

1. College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310014, China

2. Huadong Engineering Corporation Limited, Hangzhou 311122, China

Abstract

Vacuum preloading is a commonly adopted method for improving soft ground. During the preloading period, the applied vacuum pressure is constant or multistaged, implying that the vacuum pump must work continuously with constant or increasing operating power. To reduce the energy consumption of the vacuum pump, a new loading strategy of cyclic vacuum loading was proposed in this study, whereby the pump is periodically switched on and off, and hence the vacuum pressure ascends and descends accordingly. To guide the design of cyclic vacuum preloading, a large-strain radial consolidation theory incorporating the shifting of the consolidation status of ground soil from normally consolidated to overconsolidated (and vice versa) was established in the present study. Based on the established theory, the treatment effects of cyclic vacuum loading can be quantitatively determined, including the ground settlement and the degree of consolidation, while the energy consumption can be simply determined by multiplying the power by the operating time of the vacuum pump, which works only during the ascending stage of cyclic vacuum pressure. Two cases of the cyclic vacuum preloading strategy were evaluated herein, that is, the complete cyclic vacuum loading and combined cyclic/constant vacuum loading cases. Finally, experimental tests were conducted to demonstrate the energy-saving effect of cyclic vacuum preloading. Compared to the conventional vacuum preloading strategy (i.e., constant vacuum pressure), the energy consumption of the cyclic vacuum loading strategy can be drastically reduced (80% reduction), while the treatment effects remain basically unaffected.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

Canadian Science Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3