Author:
Cutler Adrian J.,Light Robley J.
Abstract
The yeast Candida bogoriensis produced large quantities of an extracellular glycolipid, the diacetyl sophoroside of 13-hydroxydocosanoic acid, when grown on a standard glucose rich medium (3% glucose, 0.15% yeast extract), but not when grown on a low glucose medium (0.5% glucose, 0.4% yeast extract) (A. J. Cutler and R. J. Light. 1979. J. Biol. Chem. 254: 1944–1950). Glucose levels also affected the quantity and distribution of the free fatty acid and triglyceride fractions synthesized by this organism. Cells grown on the low glucose medium contained palmitate and stearate as the major fatty acids in these two fractions, and a 3-h incubation with [1-14C]acetate led primarily to the labeling of these two acids. Cells grown on the standard enriched glucose medium contained relatively less stearate and more behenate than the low glucose grown cells, and the incorporation of [1-14C]acetate into stearate was decreased, while that into behenate was increased.Supplementation of low glucose grown cells with glucose led to a rapid stimulation of fatty acid synthesis, primarily palmitate and stearate in the free fatty acid fraction and stearate in the triglyceride fraction. Total triglyceride began to increase a few hours after supplementation, but synthesis of the extracellular glycolipid, and hence 13-hydroxydocosanoic acid, did not occur until 12–24 h after supplementation. The stimulation by glucose of long chain fatty acid synthesis in C. bogoriensis was therefore a process distinct from the glucose stimulation of palmitate and stearate synthesis, though the two events may be causally related.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献