Author:
Wallace Carmichael JA,Clark-Lewis Ian
Abstract
Many types of physical, spectroscopic, and biological studies of proteins and other macromolecules are facilitated by the incorporation of reporter groups. In many cases these are single atom substitutes, for example isotopes (13C for C), or light (F for H) and heavy (Se for S) atom homologs. In some circumstances the incorporation of two different labels in the same molecule would be greatly desirable. Commonly used protein engineering methods for incorporating them can rarely cope with differential double labeling, and have other limitations such as universal, non-specific, or random incorporation. Although de novo peptide synthesis has the power to achieve highly specific labeling, the difficulties inherent in creating long sequences lead us to propose protein semisynthesis as the most practical approach. By ligating combinations of natural and labeled synthetic fragments to reform holoproteins, we can overcome any of the limitations discussed. Using cytochrome c as a model protein we show that two reporter atoms, selenium and bromine, can be simultaneously and site-specifically incorporated without significant consequences to structure and (or) function. This capability opens up the prospect of advances in a number of areas in structural biology.Key words: semisynthesis, peptide synthesis, reporter groups, cytochrome c, structural biology.
Publisher
Canadian Science Publishing
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献