Reconstructing spatial tree point patterns from nearest neighbour summary statistics measured in small subwindows

Author:

Pommerening Arne12,Stoyan Dietrich12

Affiliation:

1. School of the Environment and Natural Resources, College of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, Wales, UK.

2. Institut für Stochastik, TU Bergakademie Freiberg, Institut für Stochastik, D-09596 Freiberg, Germany.

Abstract

Spatial tree data are required for the development of spatially explicit models and for the estimation of summary statistics such as Ripley’s K function. Such data are rare and expensive to gather. This paper presents an efficient method of synthesizing spatial tree point patterns from nearest neighbour summary statistics (NNSS) sampled in small circular subwindows, which uses a stochastic optimization technique based on simulated annealing and conditional simulation. This nonparametric method was tested by comparing tree point patterns, reconstructed from sample data, with the original woodland patterns of three structurally different tree populations. Analysis and validation show that complex spatial woodland structures, including long-range tree interactions, can be successfully reconstructed from NNSS despite the limited range of the subwindows and statistics. The influence of the NNSS varies depending on the woodland under study. In some cases, the sampling results can be improved by reconstruction. Furthermore, it is clearly shown that it is possible to estimate second-order characteristics such as Ripley’s K function from small circular subwindows through the reconstruction technique. The results offer new opportunities for adding value to woodland surveys by making raw data available for further work such as growth projections, visualization, and modelling.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3