Nitrogen source and rate effects on residual soil nitrate and overwinter NO3-N losses for irrigated potatoes on sandy soils

Author:

Clément Chedzer-Clarc12,Cambouris Athyna N.1,Ziadi Noura1,Zebarth Bernie J.3,Karam Antoine2

Affiliation:

1. Agriculture and Agri-Food Canada, Quebec Research and Development Centre, 2560 Hochelaga Boulevard, Québec, QC G1V 2J3, Canada.

2. Department of Soils and Agri-Food Engineering, Université Laval, Paul Comtois Building, Québec, QC G1V 0A6, Canada.

3. Agriculture and Agri-Food Canada, Fredericton Research and Development Centre, P.O. Box 20280, Fredericton, NB E3B 4Z7, Canada.

Abstract

Residual soil NO3-N (RSN) is susceptible to loss during the non-growing season. This 5 yr study investigated the effects of three N fertilizer sources [ammonium nitrate (AN), ammonium sulfate (AS), and polymer-coated urea (PCU)] applied at four rates (60, 120, 200, and 280 kg N ha−1) plus an unfertilized control on RSN following potato production and on overwinter NO3-N changes in an irrigated sandy soil in Quebec, Canada. Composite soil samples were collected at the 0–15, 15–30, 30–60, and 60–90 cm depths immediately after potato harvest in fall and again in the following spring from 2008 to 2012. Residual soil NO3-N content within the 0–30 cm depth (RSN0–30) was highly correlated with the RSN content in the 0–90 cm depth (RSN0–90), indicating that RSN0–30 can be used as an indicator of soil profile NO3-N accumulation. Overall, RSN0–90 increased with fertilizer N application rate, particularly for above the minimum fertilizer N rate required to maximize yield (Nmax), and was generally higher for years with greater pre-plant soil NO3-N. The split application of AN and AS resulted in lower RSN0–90 than the single application of PCU at above Nmax. Overwinter losses of soil NO3-N were generally increased with increasing RSN0–90 in fall. The results suggest that reducing the fertilizer N rate is more important than the choice of N source in managing RSN.

Publisher

Canadian Science Publishing

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3