Abstract
Specimens of Populus nigra L. cv. Loenen exhibit premature leaf senescence when exposed for a few weeks to realistic air pollution. In this study, the changes in levels of foliar carbohydrates and myo-inositol (MI) due to 30 ± 1 nL/L O3 + 12 ± 1 nL/L SO2 from the onset of exposure to the occurrence of premature abscission is presented. Petioles and laminae of the 12 oldest leaves were separately analysed on days 0, 4, 8, 12, 16, 20, 22, and 32 of continuous exposure, which was performed in open-top chambers (OTC). On days 8 to 12, clearly prior to yellowing (starting on day 22), total nonstructural carbohydrates (TNC; starch + raffinose + sucrose + glucose + fructose + MI) in the fumigated laminae exceeded that in controls by about 30%. This increase was due to higher amounts of different soluble forms, while starch remained unaltered. From day 20 onwards, the level of TNC in the fumigated laminae progressively fell below that in controls. This decrease was due to a progressive decline in starch, which had started on day 16 and was dominating, although glucose and raffinose increased significantly. In the petioles, starch, sucrose, and glucose decreased because of fumigation with the occurrence of leaf yellowing, while raffinose increased. In contrast, MI in the petioles progressively accumulated directly on exposure until leaf yellowing occurred. The results are discussed in terms of the "general adaption syndrome" of H. Selye (1936. Nature (London), 138: 32). The marked MI response in petioles is concluded to be an early indication of phytorelevant O3 + SO2 pollution. Keywords: air pollution, carbohydrates, myo-inositol, pigments, Populus nigra L., senescence, stress.
Publisher
Canadian Science Publishing
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献