Activation barriers for oxygen diffusion in polystyrene and polycarbonate glasses: effects of codissolved argon, helium, and nitrogen

Author:

Wang Bojie,Ogilby Peter R.

Abstract

A recently developed spectroscopic technique was used to determine oxygen diffusion coefficients as a function of temperature for polystyrene and polycarbonate films. Data were recorded at total pressures <300 Torr over the temperature range 5–45 °C under conditions in which argon, helium, and nitrogen, respectively, were copenetrants. In all cases, the presence of the additional gas caused an increase in the oxygen diffusion coefficient. Arrhenius plots of the data yield (a) a diffusion activation barrier, Eact, and (b) a diffusion coefficient, D0, that represents the condition of "barrier-free" gas transport for the temperature domain over which the Arrhenius plot is linear. For all cases examined in both polystyrene and polycarbonate, D0 increased with an increase in the partial pressure of added gas. In polystyrene, the presence of an additional gas did not change Eact. In polycarbonate, Eact obtained in the presence of helium and argon likewise did not differ from that obtained in the absence of the copenetrant. When nitrogen was the added gas, however, a larger value of Eact was obtained. This latter observation is interpreted to reflect the plasticization of polycarbonate by nitrogen. Eact and D0 data are discussed within the context of a model that distinguishes between dynamic and static elements of free volume in the polymer matrix. Keywords: oxygen diffusion, polystyrene, polycarbonate, activation barrier.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reduction of light output of plastic scintillator tiles during irradiation at cold temperatures and in low-oxygen environments;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2024-02

2. Robust estimates of solute diffusivity in polymers for predicting patient exposure to medical device leachables;Journal of Polymer Science;2023-07-05

3. Dose rate effects in radiation-induced changes to phenyl-based polymeric scintillators;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2022-11

4. Recapitulating Tumor Hypoxia in a Cleanroom-Free, Liquid-Pinning-Based Microfluidic Tumor Model;ACS Biomaterials Science & Engineering;2022-06-09

5. Dual-emissive, oxygen-sensing boron nanoparticles quantify oxygen consumption rate in breast cancer cells;Journal of Biomedical Optics;2020-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3