In-plane oxygen diffusion measurements in polymer films using time-resolved imaging of programmable luminescent tags

Author:

Kantelberg Richard,Achenbach Tim,Kirch Anton,Reineke Sebastian

Abstract

AbstractOxygen diffusion properties in thin polymer films are key parameters in industrial applications from food packaging, over medical encapsulation to organic semiconductor devices and have been continuously investigated in recent decades. The established methods have in common that they require complex pressure-sensitive setups or vacuum technology and usually do not come without surface effects. In contrast, this work provides a low-cost, precise and reliable method to determine the oxygen diffusion coefficient D in bulk polymer films based on tracking the phosphorescent pattern of a programmable luminescent tag over time. Our method exploits two-dimensional image analysis of oxygen-quenched organic room-temperature phosphors in a host polymer with high spatial accuracy. It avoids interface effects and accounts for the photoconsumption of oxygen. As a role model, the diffusion coefficients of polystyrene glasses with molecular weights between 13k and 350k g/mol are determined to be in the range of (0.8–1.5) × 10–7 cm2/s, which is in good agreement with previously reported values. We finally demonstrate the reduction of the oxygen diffusion coefficient in polystyrene by one quarter upon annealing above its glass transition temperature.

Funder

Hector Fellow Academy,Germany

Deutsche Forschungsgemeinschaft,Germany

HORIZON EUROPE European Research Council

Technische Universität Dresden

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tuning Charge-Transfer States by Interface Electric Fields;ACS Applied Materials & Interfaces;2024-06-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3