Effects of Inhibitors of Metabolism on Adenine Nucleotides and on 22Na and 42K and Net Movements in Rat Uteri at 25 °C

Author:

Daniel E. E.,Robinson Kathleen

Abstract

The effects of 10−3 M iodoacetate (IAA) and (or) 10−3 M dinitrophenol (DNP) on Na and K fluxes and contents and on adenine nucleotide levels of isolated rat uterine horns were studied. Early 22Na efflux was slightly increased by DNP in the fresh and Na-rich tissues. IAA and DNP alone or together reduced 22Na efflux from the larger cellular fraction (No. 2) in both fresh and Na-rich tissues. 22Na efflux from the smaller cellular fraction (No. 3) was accelerated by IAA and by DNP in Na-rich tissues. DNP increased 22Na influx in both types of tissue and caused net Na gain and K loss. In fresh tissues IAA or IAA plus DNP accelerated 22Na influx, but slowed this influx in Na-rich tissues. In fresh tissues the ATP content was reduced by 50% by DNP. After a 60-min exposure with IAA and a 15- to 20-min exposure with IAA plus DNP, the ATP levels were negligible. The onsets of action of IAA or of IAA plus DNP on Na fluxes were correlated with ATP depletion, but early acceleration of 22Na efflux by DNP was not. In fresh tissues 42K influx was slightly decreased at the time of ATP depletion and the influx was further slowed as tissue potassium was replaced by sodium. IAA plus DNP increased K efflux in 10 min and IAA alone increased K efflux after 100 min. Thus K flux changes were not well correlated with ATP depletion. Substitution of K for all the sodium in the bathing media did not alter the quality of the effects of IAA or IAA plus DNP on sodium efflux. When prolonged glucose depletion eliminated ATP and ADP, the effects of IAA could not be duplicated. But IAA alone, or with DNP, still caused alterations in the 22Na efflux. Therefore IAA acted on ion fluxes by a mechanism other than ATP depletion. Both fresh and Na-rich tissues swelled after ATP depletion. An effect on internal osmotic pressure rather than ATP-depletion per se was postulated. Other studies showed that Na-rich tissues were resistant to shrinking by hypertonic sucrose and became more so secondarily after ATP depletion because of increased sucrose permeability. Evidence from studies of swelling, as well as flux data, suggested that at least two Na pumps were present. Both were ATP-dependent. One was ouabain-sensitive and exchanged Na for K, while the other was ouabain-insensitive and controlled movement of Na with water.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3