Aboveground biomass and nitrogen nutrition in a chronosequence of pristine Dahurian Larix stands in eastern Siberia

Author:

Schulze E.-D.,Schulze W.,Koch H.,Arneth A.,Bauer G.,Kelliher F.M.,Hollinger D.Y.,Vygodskaya N.N.,Kusnetsova W.A.,Sogatchev A.,Ziegler W.,Kobak K.I.,Issajev A.

Abstract

Measurements of aboveground biomass and nitrogen (N) nutrition were made during July 1993 in 50-, 130-, and 380-year-old stands of Larixgmelinii (Rupr.) Rupr. in eastern Siberia. Constituting six forest types based on understorey plants, the stands were representative of vegetation throughout the Yakutsk region. Average tree height, diameter, and density ranged from 2 m, 23 mm, and 50 800 stems/ha in the 50-year-old stand to 11 m, 160 mm, and 600 stems/ha in the oldest stand. Aboveground biomass in the 50-year-old stand was 4.4 kg•m−2, and the aboveground N pool was 1.1 mol•m−2. This was slightly higher than the N pool in a 125-year-old stand with a Ledum understorey (1.0 mol•m−2), despite its higher biomass (7.2 kg•m−2). The highest observed aboveground biomass in a 125-year-old stand (characterized by the N2-fixing understorey plant Alnasterfruticosa) reached 12.0 kg•m−2, but the corresponding N pool was only 1.6 mol•m−2. In the oldest stand, aboveground biomass was 8.9 kg•m−2 and the N pool was 1.1 mol•m−2. There was thus a relatively constant quantity of N in the aboveground biomass of stands differing in age by almost 400 years. We postulate that N sets a limit on carbon accumulation in this boreal forest type. Trees were extremely slow growing, and there was essentially no aboveground biomass accumulation between the ages of 130 and 380 years because of a lack of available N. This conclusion was supported by graphical analysis indicating that the self-thinning process in our stands was not governed by the availability of radiation according to allometric theory. Much of the available N was used in the production of tree stems where 86% of the aboveground N (and 96% of aboveground biomass) was immobilized in the oldest stand. N in wood of the old stand exceeded the N pool in the litter layer and was 20% of the N pool in the Ah horizon. The processes of carbon and N partitioning were further explored by the estimation of carbon and N fluxes during three periods of forest development. We calculated a loss of ecosystem N during the period of self-thinning, while in the mature stands the N cycle appeared to be very tight. The immobilized N is returned from the wood into a plant-available form only by a recurrent fire cycle, which regenerates the N cycle. Thus fire is an essential component for the persistence of the L. gmelinii forest.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3