Precipitation and Temperature Influence the Relationship between Stand Structural Characteristics and Aboveground Biomass of Forests—A Meta-Analysis

Author:

Ma Yingdong1,Eziz Anwar2,Halik Ümüt1ORCID,Abliz Abdulla3,Kurban Alishir2ORCID

Affiliation:

1. College of Ecology and Environment, Ministry of Education Key Laboratory of Oasis Ecology, Xinjiang University, Ürümqi 830046, China

2. Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China

3. College of Tourism, Key Laboratory of Sustainable Development of Xinjiang′s Historical and Cultural Tourism, Xinjiang University, Ürümqi 830046, China

Abstract

Forest aboveground biomass (AGB) is not simply affected by a single factor or a few factors, but also by the interaction between them in complex ways across multiple spatial scales. Understanding the joint effect of stand structural characteristics and climate factors on AGB on large scales is critical for accurate forest carbon storage prediction and sustainable management. Despite numerous attempts to clarify the relationships between stand structural characteristics (tree density/TD, diameter at breast height/DBH, basal area/BA), climate factors (mean annual temperature/MAT, mean annual precipitation/MAP), and AGB, they remain contentious on a large scale. Therefore, we explored the relationships between stand structural characteristics, climate factors, and AGB at a biome level by meta-analyzing datasets contained in 40 articles from 25 countries, and then answered the questions of how stand structural characteristics influence AGB at the biome level and whether the relationships are regulated by climate on a large scale. Through using regression analysis and the establishment of a structural equation model, the results showed that the influence of basal area on AGB at the biome level was more substantial than that of tree density and DBH, and the significant relationship between basal area and AGB was relatively stable regardless of biome variation, but the effects of tree density and DBH was non-negligible within the biome. Climatic factors (e.g., temperature and precipitation), should be considered. Our meta-analysis illustrated the complicated interactions between climate factors, stand structural characteristics, and the AGB of forests, highlighting the importance of climate effects on regulating stand structural characteristics and AGB relationships. We suggest that basal area be preferred and considered in forest sustainable management practice to optimize stand structure for increasing carbon storage potential, with close attention to local climate conditions. Overall, our meta-analysis will crucially aid forest management and conservation in the context of global environmental changes, and provide novel insights and a scientific reference to lead to future carbon storage research on large scales.

Funder

National Natural Science Foundation of China

Third Xinjiang Scientific Expedition and Research Program

Tarim River Basin Authority

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3