From cells to globe: approaching the dynamics of DMS(P) in the ocean at multiple scales

Author:

Simó Rafel

Abstract

Major advances in dimethylated sulfur research are being made by approaching its dynamics at multiple scales. At the molecular to cellular level, single-cell techniques in molecular biology allow us to identify the microbes involved in cycling of dimethylated sulfur. Also, we find that dimethylsulfoxide (DMSO) is as ubiquitous as dimethyl sulfoniopropionate (DMSP) in marine plankton, which supports the recent suggestion that both compounds are involved in coping with oxidative stress. At the community level, there is recent evidence for the role of DMSP as a major carrier in organic sulfur transfer and cycling through trophic levels, from phytoplankton to bacteria and to zooplankton through herbivore protozoans. As a consequence, the food web dynamics drive the oceanic emission of atmospheric sulfur. At the ecosystem level, the diverse and intricate effects of the physicochemical setting (light, wind, nutrients) on the oceanic cycling of dimethylated sulfur are being uncovered. A proposed shortcut to detailed understanding of the individual processes presents the depth of the surface mixed layer as the variable that integrates most of the environmental effects and serves for predicting dimethylsulfide (DMS) concentrations, even at the global ocean level. This opens the door to assessing the strength of the DMS biogeophysical system as a climate regulator.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3