Biological sources and sinks of dimethylsulfide disentangled by an induced bloom experiment and a numerical model

Author:

Le Gland Guillaume12ORCID,Masdeu‐Navarro Marta1,Galí Martí1,Vallina Sergio M.3,Gralka Matti45,Vincent Flora67,Cordero Otto4,Vardi Assaf6,Simó Rafel1ORCID

Affiliation:

1. Department of Marine Biology and Oceanography Institute of Marine Sciences (ICM—CSIC) Barcelona Spain

2. Mediterranean Institute of Oceanography (UMR 7294) Aix‐Marseille Université, Université de Toulon, CNRS, IRD Marseille France

3. Gijón Oceanography Centre, Spanish Institute of Oceanography (IEO—CSIC) Gijón Spain

4. Department of Civil and Environmental Engineering Massachusetts Institute of Technology Cambridge Massachusetts USA

5. Systems Biology Lab, Amsterdam Institute for Life and Environment (A‐LIFE), Vrije Universiteit Amsterdam Amsterdam The Netherlands

6. Department of Plant and Environmental Sciences Weizmann Institute of Science Rehovot Israel

7. Developmental Biology Unit EMBL Heidelberg Germany

Abstract

AbstractDimethylsulfide (DMS) is a climatically active trace gas promoting cloud formation. The biochemical precursor of DMS, dimethylsulfoniopropionate (DMSP), is a phytoplankton metabolite and a source of reduced sulfur for many microbial species. Because of the complex interactions between their many producers and consumers, the dynamics of DMSP and DMS in the ocean are still poorly constrained. In this study we measure particulate DMSP, dissolved DMSP (), and DMS concentrations in seven mesocosms where two consecutive phytoplankton blooms (first, pico‐ and nano‐algae; second, Emiliania huxleyi) were induced by nutrient addition, and we build a mechanistic numerical model to identify the sources and sinks that best account for the observations. The mesocosms were designed as replicates but differ from each other by their E. huxleyi virus abundance due to stochastic differences in initial conditions. The model shows that heterotrophic bacteria cannot be the only consumers of . A fraction of dissolved must be consumed by phytoplankton to avoid excessive accumulation during the first bloom. The induced blooms increase DMS concentration by 220% on average, until an increase in the abundance of DMS‐consuming bacteria brings DMS concentration back to its pre‐bloom value, after 3 weeks of experiment. Therefore phytoplankton blooms can increase DMS emission to the atmosphere, but only during a transient regime of a few weeks. The model also shows that the DMS yield, production and emission are increased when the coccolithophore bloom is terminated by a viral infection, but decreased if the infection occurs several days before the bloom can reach its maximum.

Funder

H2020 European Research Council

Simons Foundation

Publisher

Wiley

Subject

Aquatic Science,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3