Twentieth-century warming and the dendroclimatology of declining yellow-cedar forests in southeastern Alaska

Author:

Beier Colin M.123,Sink Scott E.123,Hennon Paul E.123,D’Amore David V.123,Juday Glenn P.123

Affiliation:

1. Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775-7000, USA.

2. School of Natural Resources and Agricultural Sciences, University of Alaska Fairbanks, Fairbanks, AK 99775-7200, USA.

3. USDA Forest Service, Pacific Northwest Research Station, Forestry Sciences Laboratory, Juneau, AK 99801, USA.

Abstract

Decline of yellow-cedar ( Chamaecyparis nootkatensis ((D. Don) Spach) has occurred on 200 000 ha of temperate rainforests across southeastern Alaska. Because declining forests appeared soon after the Little Ice Age and are limited mostly to low elevations (whereas higher elevation forests remain healthy), recent studies have hypothesized a climatic mechanism involving early dehardening, reduced snowpack, and freezing injury. This hypothesis assumes that a specific suite of microclimatic conditions occurs during late winter and declining cedar populations across the region have responded similarly to these conditions. Based on the first geographically extensive tree ring chronologies constructed for southeastern Alaska, we tested these assumptions by investigating regional climatic trends and the growth responses of declining cedar populations to this climatic variation. Warming winter trends were observed for southeastern Alaska, resulting in potentially injurious conditions for yellow-cedar due to reduced snowfall and frequent occurrence of severe thaw–freeze events. Declining cedar forests shared a common regional chronology for which late-winter weather was the best predictor of annual growth of surviving trees. Overall, our findings verify the influence of elevational gradients of temperature and snow cover on exposure to climatic stressors, support the climatic hypothesis across large spatial and temporal scales, and suggest cedar decline may expand with continued warming.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3