Multiple divergent patterns in yellow-cedar growth driven by anthropogenic climate change

Author:

Comeau Vanessa M.,Daniels Lori D.

Abstract

AbstractThe global rise in temperature and associated changes in climate have led to decline of forests around the globe, across multiple species and ecosystems. A particularly severe example of this is yellow-cedar (Callitropsis nootkatensis) decline along the coast of British Columbia and Alaska, where anthropogenic climate change has led to reduced insulating snowpack, leaving yellow-cedar roots vulnerable to thaw-freeze events, resulting in freezing damage to fine roots and water stress during the subsequent growing season. This includes abundant evidence of tree decline and mortality on the islands of Haida Gwaii. Yellow-cedar decline is complex, with the potential for freezing injury over multiple years and damage that can accumulate over time. We found trees in various stages of decline, from long dead to currently declining, and multiple growth patterns at each study site. We conducted a principal component analysis and identified patterns of divergent growth and divergent response to climate among yellow-cedars within the same stands, across all sites, including three distinct periods of an onset of growth decline (1960s, 1990s, 2000s). Yellow-cedars affected by decline were decreasing in growth and negatively associated with warmer drier winter conditions, whereas yellow-cedars not affected by decline were increasing in growth and positively associated with warmer growing season temperatures. The limiting factors for declining trees, warm dry winter conditions, are consistent with the hypothesis from the mainland that climate warming has led to root freezing. Our research highlights the need to consider multiple signals within a site that would be masked by a single site-level chronology. This is especially relevant within the context of forest decline, where stressors may have differing effects on individual trees. Graphical abstract

Funder

NSERC Canada Graduate Scholarship

Peter Rennie Memorial Award

NSERC Discovery Grant

NSERC Engage with Taan Forest Ltd

UBC Faculty of Forestry Graduate Award

VanDusen Graduate Fellowship

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3