Artificial neural network based modeling of the coupled effect of sulphate and temperature on the strength of cemented paste backfill

Author:

Orejarena Libardo1,Fall Mamadou1

Affiliation:

1. Department of Civil Engineering, University of Ottawa, 161 Colonel By, Ottawa, ON K1N 6N5, Canada.

Abstract

Among the different options for mine waste management, cemented paste backfills (CPB) have become important in mining operations around the world due to their environmental and economic benefits. The key design parameter of a CPB structure is its mechanical stability, which is commonly evaluated by the uniaxial compressive strength (UCS) of the CPB material. Experimental studies have shown that the sulphate present within the CPB and the curing temperatures can significantly affect the strength of CPBs. The increasing use of CPBs in underground mine operations as well as the subjection of CPBs to a large variability of thermal (curing temperature) and chemical (sulphate content) loads, make it necessary to model and quantify the coupled effect of sulphate and curing temperature on the strength (key design parameter) of CPBs. Therefore, the main objective of this study is to develop a methodological approach and a mathematical model based on an artificial neural network (ANN) to analyze and predict the effect of different amounts of sulphate on the strength of mature CPBs cured at various temperatures. Based on the experimental results of UCS tests from previous studies on various CPBs, the authors have developed an ANN model by using an ANN methodology implemented through MATLAB™. The developed model is validated with experimental data that is not used for the model development. The validation shows good agreement between the predicted and experimental data. The results from the ANN model of this study show that the coupled effect of curing temperature and sulphate significantly affects the strength of CPBs. This effect can be positive (strength increase) or negative (strength decrease) depending on the initial amount of sulphate content, the curing temperature, and type of binder. Furthermore, this study demonstrates that ANN can be used as a valuable tool to evaluate the coupled influence of sulphate and temperature on the strength of CPBs, i.e., it is a suitable tool for the optimization of a CPB mixture.

Publisher

Canadian Science Publishing

Subject

General Environmental Science,Civil and Structural Engineering

Reference32 articles.

1. Development of a high modulus paste fill using fine gold mill tailings

2. Artificial neural networks: fundamentals, computing, design, and application

3. A contribution to understanding the hardening process of cemented pastefill

4. Celestin, J.C. 2008. Geotechnical properties of cemented paste backfill and tailings liners: effect of mix components and temperature. Master thesis (M.A.Sc.), University of Ottawa, Ottawa, Ont.

5. Demuth, H., Beale, M., and Hagan, M. 2008. Artificial Neural Network Toolbox™ 6, User’s Guide, MATLAB. pp. 1–18.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3