Developing interpretable machine learning model for evaluating young modulus of cemented paste backfill

Author:

Ngo Quoc Trinh1,Nguyen Linh Quy1,Vu Trung Hieu1,Nguyen Long Khanh1,Tran Van Quan1

Affiliation:

1. University of Transport Technology, Thanh Xuan, Hanoi, Vietnam

Abstract

Cemented paste backfill (CPB), a mixture of wet tailings, binding agent, and water, proves cost-effective and environmentally beneficial. Determining the Young modulus during CPB mix design is crucial. Utilizing machine learning (ML) tools for Young modulus evaluation and prediction streamlines the CPB mix design process. This study employed six ML models, including three shallow models Extreme Gradient Boosting (XGB), Gradient Boosting (GB), Random Forest (RF) and three hybrids Extreme Gradient Boosting-Particle Swarm Optimization (XGB-PSO), Gradient Boosting-Particle Swarm Optimization (GB-PSO), Random Forest-Particle Swarm Optimization (RF-PSO). The XGB-PSO hybrid model exhibited superior performance (coefficient of determination R2 = 0.906, root mean square error RMSE = 19.535 MPa, mean absolute error MAE = 13.741 MPa) on the testing dataset. Shapley Additive Explanation (SHAP) values and Partial Dependence Plots (PDP) provided insights into component influences. Cement/Tailings ratio emerged as the most crucial factor for enhancing Young modulus in CPB. Global interpretation using SHAP values identified six essential input variables: Cement/Tailings, Curing age, Cc, solid content, Fe2O3 content, and SiO2 content.

Publisher

IOS Press

Reference42 articles.

1. Heavy metal accumulation characteristics of 3 pioneer plants in wasteland of coalmine tailing in mingshan;Liu;Applied Mechanics and Materials,2013

2. Effects of biochar and marble mud on mine waste properties toreclaim tailing ponds,;Muñoz;Land Degradation & Development,2016

3. Advances in reducing large volumes of environmentally harmful mine waste rocks and tailings;Yilmaz;Gospodarka Surowcami Mineralnymi T. 27,2011

4. Limestone asaggregate and precursor in binders of waste glass activated by CaOand NaOH;Menchaca-Ballinas;Construction and Building Materials,2020

5. A review of additives used in the cemented paste tailings: Environmental aspects and application;Saedi;Journal of Environmental Management,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3