Grape seed proanthocyanidins ameliorates cadmium-induced renal injury and oxidative stress in experimental rats through the up-regulation of nuclear related factor 2 and antioxidant responsive elements

Author:

Nazima Bashir11,Manoharan Vaihundam11,Miltonprabu Selvaraj11

Affiliation:

1. Department of Zoology, Faculty of Science, Annamalai University, Annamalainagar 608002, Tamilnadu, India.

Abstract

Cadmium (Cd) preferentially accumulates in the kidney, the major target for Cd-related toxicity. Cd-induced reactive oxygen species (ROS) have been considered crucial mediators for renal injury. The biologically significant ionic form of cadmium (Cd+) binds to many bio-molecules, and these interactions underlie the toxicity mechanisms of Cd. The present study was hypothesized to explore the protective effect of grape seed proanthocyanidins (GSP) on Cd-induced renal toxicity and to elucidate the potential mechanism. Male Wistar rats were treated with Cd as cadmium chloride (CdCl2, 5 mg·kg−1 bw, orally) and orally pre-administered with GSP (100 mg·kg−1 bw) 90 min before Cd intoxication for 4 weeks to evaluate renal damage of Cd and antioxidant potential of GSP. Serum renal function parameters (blood urea nitrogen and creatinine) levels in serum and urine, renal oxidative stress (lipid peroxidation, protein carbonylation, enzymatic, and non-enzymatic antioxidants), inflammatory (NF-κB p65, NO, TNF-α, IL-6), apoptotic (caspase-3, caspase-9, Bax, Bcl-2), membrane bound ATPases, and Nrf2 (HO-1, keap1, γ-GCS, and μ-GST) markers were evaluated in Cd-treated rats. Pretreatment with GSP revealed a significant improvement in renal oxidative stress markers in kidneys of Cd-treated rats. In addition, GSP treatment decreases the amount of iNOS, NF-κB, TNF-α, caspase-3, and Bax and increases the levels Bcl-2 protein expression. Similarly, mRNA and protein analyses substantiated that GSP treatment notably normalizes the renal expression of Nrf2/Keap1 and its downstream regulatory proteins in the Cd-treated rats. Histopathological and ultra-structural observations also demonstrated that GSP effectively protects the kidney from Cd-induced oxidative damage. These findings suggest that GSP ameliorates renal dysfunction and oxidative stress through the activation of Nrf2 pathway in Cd-intoxicated rats.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

Reference64 articles.

1. Molecular mechanisms of cardioprotection by a novel grape seed proanthocyanidin extract

2. Antioxidant Activity of Extracts, Condensed Tannin Fractions, and Pure Flavonoids from Phaseolus vulgaris L. Seed Coat Color Genotypes

3. Beutler, E. 1983. Active transport of glutathione disulfide from erythrocytes. In Functions of glutathione, biochemical, physiological, toxicological and clinical aspects. Edited by A. Larson, S. Orrenius, A. Holmgren, and B. Mannerwik. Raven Press. New York, 65.

4. Quercetin regulates oxidized LDL induced inflammatory changes in human PBMCs by modulating the TLR-NF-κB signaling pathway

5. Bonting, S.L. 1970. Presence of enzyme systems in mammalian tissues. In Membrane and ion transport. Edited by E.E. Bilter. Wiley Inter Science. London, 257–263.

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3