Affiliation:
1. Equipment Reliability Institute, Shenyang University of Chemical Technology, Shenyang 110142, China.
2. School of Information Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China.
Abstract
Taking aim at the nonstationary nonlinearity of the rolling bearing vibration signal, a rolling bearing fault diagnosis method based on the entropy fusion feature of complementary ensemble empirical mode decomposition (CEEMD) is proposed in combination with information fusion theory. First, CEEMD of the vibration signal of the rolling bearing is performed. Then the signal is decomposed into the sum of several intrinsic mode functions (IMFs), and the singular entropy, energy entropy, and permutation entropy are obtained for the IMFs with fault features. Second, the feature extraction method of entropy fusion is proposed, and the three entropy data obtained are input into kernel principal component analysis (KPCA) for feature fusion and dimensionality reduction to obtain complementary features. Finally, the extracted features are imported into the particle swarm optimization (PSO) algorithm to optimize the least-squares support vector machine (LSSVM) for fault classification. Through experimental verification, the proposed method can be used for roller bearing fault diagnosis.
Publisher
Canadian Science Publishing
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献