Quantitative Diagnosis of Rotor Vibration Fault Using Process Power Spectrum Entropy and Support Vector Machine Method

Author:

Fei Cheng-Wei1,Bai Guang-Chen1,Tang Wen-Zhong2,Ma Shuang3

Affiliation:

1. School of Energy and Power Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China

2. School of Computer Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China

3. School of Life Science, Beijing Normal University, Beijing 100875, China

Abstract

To improve the diagnosis capacity of rotor vibration fault in stochastic process, an effective fault diagnosis method (named Process Power Spectrum Entropy (PPSE) and Support Vector Machine (SVM) (PPSE-SVM, for short) method) was proposed. The fault diagnosis model of PPSE-SVM was established by fusing PPSE method and SVM theory. Based on the simulation experiment of rotor vibration fault, process data for four typical vibration faults (rotor imbalance, shaft misalignment, rotor-stator rubbing, and pedestal looseness) were collected under multipoint (multiple channels) and multispeed. By using PPSE method, the PPSE values of these data were extracted as fault feature vectors to establish the SVM model of rotor vibration fault diagnosis. From rotor vibration fault diagnosis, the results demonstrate that the proposed method possesses high precision, good learning ability, good generalization ability, and strong fault-tolerant ability (robustness) in four aspects of distinguishing fault types, fault severity, fault location, and noise immunity of rotor stochastic vibration. This paper presents a novel method (PPSE-SVM) for rotor vibration fault diagnosis and real-time vibration monitoring. The presented effort is promising to improve the fault diagnosis precision of rotating machinery like gas turbine.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3