CLIMBING MODEL AND OBSTACLE-CLIMBING PERFORMANCE OF A CABLE INSPECTION ROBOT FOR A CABLE-STAYED BRIDGE

Author:

Xu Feng-yu1,Wang Xing-song1,Wang Lei1

Affiliation:

1. School of Mechanical Engineering, Southeast University, Nanjing, China

Abstract

A cable inspection robot is proposed to automatically check the cables of a cable-stayed bridge. First, a climbing model supported by an independent spring and an inspection robot is designed. Second, the dimensionless parameter, h/r, which is the ratio of the vertical height of the obstacle to the radius of the obstacle-climbing wheel, is selected as the evaluation standard of the climbing ability of the robot; after which a mathematical model of such obstacle-climbing ability is established. Third, the bearing capacity of the driving wheel rubber is studied using the finite element method. Afterwards, the analysis of the climbing performance is then carried out through simulation by studying two influential perspectives, namely, the positive pressure from the passive end spring and the swinging angle of the passive wheel. Finally, field experiments are carried out on the HuangPu Cable-Stayed Bridge. Based on the results, the robot can climb steadily on various inclined cables.

Publisher

Canadian Science Publishing

Subject

Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Trans-DCN: A High-Efficiency and Adaptive Deep Network for Bridge Cable Surface Defect Segmentation;Remote Sensing;2024-07-24

2. Development of Lifting System for High-Elevation Inspection Robot Targeting Hanger Ropes;Journal of Robotics and Mechatronics;2019-12-20

3. Hybrid robot climbing system design;IOP Conference Series: Materials Science and Engineering;2017-09

4. HELIX CABLE-DETECTING ROBOT FOR CABLE-STAYED BRIDGE: DESIGN AND ANALYSIS;International Journal of Robotics and Automation;2014

5. Dynamic performance of a cable with an inspection robot — analysis, simulation, and experiments;Journal of Mechanical Science and Technology;2013-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3