A SLIP MODEL FOR THE SPHERICAL ACTUATION OF THE ATLAS MOTION PLATFORM

Author:

Holland J.B.1,Hayes M.J.D.1,Langlois R.G.1

Affiliation:

1. Department of Mechanical and Aerospace Engineering Carleton University, Ottawa, Ontario, Canada

Abstract

The Atlas platform represents a novel six degree-of-freedom motion platform architecture. Orienting is decoupled from positioning, and unlimited rotations are possible about every axis. The decoupling is accomplished by fixing a three degree-of-freedom spherical orienting device, called the Atlas sphere, on a gantry with three orthogonal linear axes. The key to the design is three omni-directional wheels in an equilateral arrangement, which impart angular displacement to a sphere, providing rotational actuation. The free-spinning castor rollers provide virtually friction-free motion parallel to each omni-wheel rotation axis creating the potential for unconstrained angular motion. Since the sphere directly contacts the omni-wheels, there are no joints or links interfering with its motion, allowing full 360° motion about all axes. However, the kinematic constraints are non-holonomic. This paper explores the slip at the interface between each omni-wheel and the Atlas sphere. A kinematic slip model is presented, introducing the slip ratio, which is the ratio of the kth omni-wheel’s transverse velocity component, S⊥k, which is perpendicular to the free-spinning castor wheel axis, and the tangential velocity component, Stank, which is perpendicular to the omni-wheel driving axis, parallel to the tangential velocity vector, Vk. The long-term goal is to incorporate the slip model into a control law for position level control of the sphere. Two illustrative examples are given.

Publisher

Canadian Science Publishing

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3