EFFECTS OF SURFACE FORCES ON SQUEEZE EHL MOTION BETWEEN ELASTIC BALL AND ELASTIC COATED SURFACE

Author:

Chu Li-Ming1,Lin Jaw-Ren2,Hsu Hsiang-Chen3,Chang Yuh-Ping4

Affiliation:

1. Interdisciplinary Program of Green and Information Technology, Department of Applied Science, National Taitung University, Taitung City, Taiwan, R.O.C.

2. Department of Mechanical Engineering, Nanya Institute of Technology, Taoyuan City, Taiwan, R.O.C.

3. Department of Mechanical and Automation Engineering, Department of Industrial Management, I-Shou University, Kaohsiung City, Taiwan, R.O.C.

4. Department of Mechanical Engineering, Kun Shan University, Tainan City, Taiwan, R.O.C.

Abstract

The effects of surface forces (SF) and coated layers (CL) on pure squeeze elastohydrodynamic lubrication (EHL) motion of circular contacts are explored under constant load condition by using the finite difference method (FDM) and the Gauss–Seidel iteration method. The transient pressure profiles, surface force, film shapes, and elastic deformation during the pure squeeze process under various operating conditions in the TFEHL regime are discussed. The simulation results reveal that the difference between SFEHL model and EHL model is apparent as the film thickness is thinner than 5 nm. The oscillation phenomena in pressure and film thickness come mainly from the action of solvation forces. At contact region, the greater elastic modulus and smaller coating thicknesses, the greater pressure distribution, and the smaller film thickness. The film thicknesses are found reverse at outside the contact zone. At the exit region, i.e. the minimum film thickness region, it is valid that the greater the elastic modulus and the smaller the coating thicknesses, the greater the solvation pressure distribution. The effects of surface forces become significant as the film thickness becomes thinner.

Publisher

Canadian Science Publishing

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Feedforward control for underactuated bipedal walking on varying compliant slopes;Transactions of the Canadian Society for Mechanical Engineering;2018-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3