Feedforward control for underactuated bipedal walking on varying compliant slopes

Author:

Yao Daojin12,He Siyu12,Wu Yao12,Xiao Xiaohui12,Wang Yang12

Affiliation:

1. School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China

2. School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.

Abstract

In this paper, a feedforward control strategy is proposed to enable stable underactuated bipedal walking on varying compliant slopes with a known inclination angle, to handle the variation in natural environments. First, spring–damper units were employed in the horizontal and vertical directions to model the compliant ground, which is described as a rigid kinematic chain coupled with a spring–damper system. Second, a new definition of stable underactuated bipedal walking, based on walking speed, was proposed. Stable walking is achieved by adjusting the velocity of the biped’s center of mass (CoM) within limits that have been proven to allow at least one walking cycle. The proposed feedforward control strategy was based on the motion state of a robot’s CoM, using the new definition of stability and inspired by the gait characteristics of human walking on varying slopes. Speed control is realized by adjusting the displacement of the CoM with the change of slope to achieve stable walking. Finally, simulations were conducted to validate the proposed controller. The simulation results demonstrate that stable walking is achieved on varying compliant slopes by implementing the proposed control strategy.

Publisher

Canadian Science Publishing

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and Implementation of an Underactuated Biped Robot Prototype on Compliant Ground;2023 International Conference on Advanced Robotics and Mechatronics (ICARM);2023-07-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3