Atomic properties of selected biomolecules. Part 1. The interpretation of atomic integration errors

Author:

Aicken Fiona M,Popelier Paul LA

Abstract

Reliable atomic properties can be obtained via the theory of "Atoms in Molecules" (AIM) via integration over a finite volume. These integrations are challenging because of the variety and complexity of the shape of the AIM atoms. In practice the integration of a large number of atoms (100-1000, sampled from many molecules) yields integration errors L(Ω) of varying magnitude. We prove that it is impossible to predict the size of an angular Gauss-Legendre grid (outside the β sphere) that guarantees a pre-set error. Hence it is incorrect to assume that a large grid (~23 000 angular grid points) will automatically yield a low L(Ω) value. The erratic relationship between the integration error and the grid size prompts a statistical interpretation of atomic integration, at a purely practical level. More importantly we have investigated the relationship between L(Ω) and seven atomic properties which include volume, energy, and the magnitudes of five electrostatic multipole moments. The electronic population (N(Ω)) and the volume (v(Ω)) of carbon is linearly correlated with L(Ω), enabling the interpolation or extrapolation of N(Ω) and v(Ω). Other properties of carbon and other atoms (N, O, and S) yield low correlation coefficients but occasionally trends can be observed. For example, we find that some properties are systematically underestimated if L(Ω) is negative. This work has led to an estimate of safe error bars of atomic properties for atoms occurring in biological molecules with reasonably sized integration grids. The most stable properties were found to be the energy and the population. Finally, we have observed that the influence of the grid orientation is less if L(Ω) is small, and that population and energy are the least affected.Key words: electron density, topology, atoms in molecules, atomic properties, amino acids.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3