Computational Study on the Conformational Preferences of Neutral, Protonated and Deprotonated Glycine Dimers

Author:

Pita M. Luisa,Mosquera Ricardo A.

Abstract

A conformational analysis has been carried out for monoprotonated, unprotonated and deprotonated glycine dimers in the gas phase and an aqueous solution. MP2/6-311++(d,p), B3LYP/6-311++(d,p) and M06/6-311++(d,p) optimizations were performed for more than 200 initial conformations comprising nonionic (COOH–CH2–NH2) (N) and zwitterionic (COO−–CH2–NH3+) (Z) structures for neutral monomers. All the methods indicate that Z monomers are preferred over N ones for the neutral and deprotonated dimers in aqueous solutions, whereas the reverse trend is observed in the gas phase (including also protonated dimers). NC and ZC structures coexist in aqueous solutions for the protonated glycine dimer. The preferred geometries are significantly different depending on the media and total dimer charge. Moreover, several minima display close energies in each series (media and total dimer charge). New conformers, not previously reported, are found to be significantly populated in those conformational mixtures. Dimers containing Z monomers are associated with larger absolute solvation energies and are more prone than N-containing ones to experience protonation and deprotonation in the gas phase, whereas the reverse trend is observed in the aqueous solution. The Quantum Theory of Atoms in Molecules (QTAIM) analysis reveals that uncharged dimers display trifling electron density transfer between monomers, whereas it is significant in anionic and cationic dimers.

Publisher

MDPI AG

Subject

General Medicine

Reference37 articles.

1. Principles of Nucleic Acid Structure;Saenger,1984

2. Principles of Protein Structure;Schulz,1979

3. Hydrogen Bonding and Proton Transfer in Ionized DNA Base Pairs, Amino Acids and Peptides;Rodríguez-Santiago,2010

4. Free-Energy Maps of Base−Amino Acid Interactions for DNA−Protein Recognition

5. Weakly Bound Clusters of Biological Interest

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3