Author:
Warren Charles R,Adams Mark A
Abstract
We investigated possible causes of slower growth of Pinus pinaster Ait. supplied with nitrate, as compared with ammonium or with ammonium nitrate mixtures. Six-month-old mycorrhizal seedlings of P. pinaster were grown in sand culture for 4 months at four concentrations of N (0.125, 0.5, 2.0, or 8.0 mM) as nitrate or ammonium or with an ammoniumnitrate mixture at 0.125 or 2.0 mM. After 4 months of nutrient addition, we measured light-saturated rates of photosynthesis (Amax), rates of ammonium and nitrate uptake, growth, macro- and micro-elements, and patterns of N allocation in needles. Dry mass was unaffected by N form at 0.125 or 0.5 mM N. In contrast, dry mass of seedlings supplied with ammonium or ammonium nitrate at 2.0 and 8.0 mM N, was approximately threefold greater than seedlings supplied with nitrate alone. Concentrations of N in foliage and Amaxwere unaffected by the form or concentration of N supplied. Furthermore, concentrations of amino acid N were greater in seedlings supplied with nitrate, suggesting rates of uptake were not limiting growth. Foliage concentrations of zinc were low with nitrate supplied at a concentration of 0.5 mM or greater, and seedlings displayed symptoms typical of zinc deficiency when nitrate was supplied at 2.0 or 8.0 mM. Slower growth with nitrate could not be explained solely by either slower root uptake of nitrate N or lesser Amax. Instead, aspects of N metabolism postuptake coupled with other factors such as nutrient deficiencies may limit growth with nitrate as the sole N source.
Publisher
Canadian Science Publishing
Subject
Ecology,Forestry,Global and Planetary Change
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献