Affiliation:
1. Department of Civil Engineering, Celal Bayar University, 45140 Manisa, Turkey (e-mail: yusuf.erzin@bayar.edu.tr).
Abstract
In this study, the swell pressure versus soil suction behaviour was investigated using artificial neural networks (ANNs). To achieve this, the results of the total suction measurements using thermocouple psychrometer technique and constant-volume swell tests in oedometers performed on statically compacted specimens of Bentonite–Kaolinite clay mixtures with varying soil properties were used. Two different ANN models have been developed to predict the total suction and swell pressure. The ANNs results were compared with the experimental values and found close to the experimental results. Moreover, several performance indices such as correlation coefficient, variance account for (VAF), and root mean square error (RMSE) were calculated to check the prediction capacity of the ANN models developed. Both ANN models have shown a high prediction performance based on the performance indices. Therefore, it can be concluded that the initial soil suction is the most relevant state of suction that characterizes the potential swell pressures.
Publisher
Canadian Science Publishing
Subject
Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology
Reference31 articles.
1. Fuzzy model for the prediction of unconfined compressive strength of rock samples
2. ASTM. 1990. Standard test methods for one-dimensional swell or settlement potential of cohesive soils, ASTM Method D 4546‐85. American Society for Testing and Materials, West Conshohocken, Penn.
3. Erzin, Y. 1997. Swell pressure-soil suction relationships. M.Sc. thesis, University of Middle East Technical, Ankara, Turkey.
Cited by
64 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献