Predicting the compressive strength of self-compacting concrete using artificial intelligence techniques: a review

Author:

Terlumun SesughORCID,Onyia M. E.,Okafor F. O.

Abstract

AbstractConcrete is one of the most common construction materials used all over the world. Estimating the strength properties of concrete traditionally demands extensive laboratory experimentation. However, researchers have increasingly turned to predictive models to streamline this process. This review focuses on predicting the compressive strength of self-compacting concrete using artificial intelligence (AI) techniques. Self-compacting concrete represents an advanced construction material particularly suited for scenarios where traditional vibrational methods face limitations due to intricate formwork or reinforcement complexities. This review evaluates various AI techniques through a comparative performance analysis. The findings highlight that employing Deep Neural Network models with multiple hidden layers significantly enhances predictive accuracy. Specifically, artificial neural network (ANN) models exhibit robustness, consistently achieving R2 values exceeding 0.7 across reviewed studies, thereby demonstrating their efficacy in predicting concrete compressive strength. The integration of ANN models is recommended for formulating various civil engineering properties requiring predictive capabilities. Notably, the adoption of AI models reduces both time and resource expenditures by obviating the need for extensive experimental testing, which can otherwise delay construction activities.

Publisher

Springer Science and Business Media LLC

Reference71 articles.

1. Aci, M., Aci, Ç. İ, & Avci, M. (2018). Performance comparison of ANFIS, ANN, SVR, CART and MLR techniques for geometry optimization of carbon nanotubes using castep. Turkish Journal of Engineering, 2(3), 119–124. https://doi.org/10.31127/tuje.408976

2. Aiyer, B. G., Kim, D., Karingattikkal, N., Samui, P., & Rao, P. R. (2014). Prediction of compressive strength of self-compacting concrete using least square support vector machine and relevance vector machine. KSCE J Civil Eng., 18, 1753–1758. https://doi.org/10.1007/s12205-014-0524-0

3. Alade, I. O., Bagudu, A., Oyehan, T. A., Rahman, M. A. A., Saleh, T. A., & Olatunji, S. O. (2018). Estimating the refractive index of oxygenated and deoxygenated hemoglobin using genetic algorithm—support vector regression model. Computer Methods and Programmes in Biomedicine, 163, 135–142. https://doi.org/10.1016/j.cmpb.2018.05.029

4. Algaifi, H. A., Bakar, S. A., Alyousef, R., Mohd-Sam, A. R., Alqarni, A. S., Ibrahim, M. H. W., Shahidan, S., Ibrahim, M., Salami, B. A., Algaifi, H. A., Bakar, S. A., Alyousef, R., Moh, A. R. S., Alqarni, A. S., Ibrahim, M. H. W., Shahidan, S., Ibrahim, M., & Salami, B. A. (2021). Machine learning and RSM models for prediction of compressive strength of smart bio-concrete. Smart Structure Systems, 28, 535. https://doi.org/10.12989/SSS.2021.28.4.535

5. Ashish, D. K., & Verma, S. K. (2019). An overview on mixture design of self-compacting concrete. Structural Concrete, 20, 1–547. https://doi.org/10.1002/suco.201700279

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3