Limitations of molecular-marker-aided selection in forest tree breeding

Author:

Strauss S. H.,Lande R.,Namkoong G.

Abstract

The advances to date with quantitative trait locus identification in agronomic crops, which have mostly been with studies of inter- and intra-specific hybrids, are of little relevance to assessing the potential for marker-aided selection in nonhybrid forest tree populations. Although molecular markers provide great opportunities for dissection of quantitative traits in experimental populations, we expect that their near-term usefulness in most operational tree breeding programs will be limited. In addition to cost, this limitation results from quantitative trait locus–marker associations being limited to specific genetic backgrounds as a result of linkage equilibrium, interactions of quantitative trait locus effects with genetic backgrounds, genotype by environment interaction, and changes of quantitative trait locus allele frequencies among generations. Marker-aided selection within individually mapped full-sib families can substantially aid phenotypic selection, but only where large restrictions of genetic base are tolerated, trait heritabilities are low, markers are able to explain much of the additive variance, selection intensities within families are high compared with that among families, and very large numbers of progeny are examined. Broad use of marker-aided selection in the longer term will require substantial technical advances in a number of areas, including means for precise quantitative trait locus identification; reduction of large-scale mapping and genotyping costs; and changes in breeding and propagation systems. Consideration of trait characteristics suggests that marker-aided selection will be most efficient in direct selection with high-value, low-heritability traits such as height and diameter growth. These traits, however, often show genotype by environment interaction and unfavorable genetic correlations with other desirable traits, and are likely to be controlled by a large number of minor genes rather than relatively few major ones. Traits with the most potential for marker-aided selection in nonhybrid tree populations will therefore be strongly inherited ones for which phenotypic assay is difficult; examples might include wood quality, resistance to biotrophic pathogens, and resistance to air pollutants. Because of the large disequilibrium generated during hybridization and the great phenotypic variance that segregates in F2 and backcross generations, interspecific hybrid programs lend themselves much more readily to marker-aideed selection. Segregation distortion and related meiotic aberrations, however, may substantially hamper precise estimation of quantitative trait locus locations and phenotypic effects. Nonadditive quantitative trait locus effects will likely be greater in hybrid populations than in intraspecific populations. Rapid decay of disequilibrium due to recombination, and allele frequency shifts due to selective breeding and natural selection during early generations after hybridization, are likely to cause instability for quantitative trait locus - marker associations and quantitative trait locus phenotypic effects. Finally, interspecific hybridization of highly heterozygous individuals from species in linkage equilibrium will impede marker-aided selection.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3