Author:
Changizi Mark A,Cherniak Christopher
Abstract
Two principles suffice to model the large-scale geometry of normal human coronary arterial networks. The first principle states that artery diameters are set to minimize the power required to distribute blood through the network. The second principle states that arterial tree geometries are set to globally minimize the lumen volume. Given only the coordinates of an arterial tree's source and "leaves", the model predicts the nature of the network connecting the source to the leaves. Measurements were made of the actual geometries of arterial trees from postmortem healthy human coronary arteriograms. The tree geometries predicted by the model look qualitatively similar to the actual tree geometries and have volumes that are within a few percent of those of the actual tree geometries. Human coronary arteries are therefore within a few percent of perfect global volume optimality. A possible mechanism for this near-perfect global volume optimality is suggested. Also, the model performs best under the assumption that the flow is not entirely steady and laminar.Key words: arteries, optimization, volume, power, geometry.
Publisher
Canadian Science Publishing
Subject
Physiology (medical),Pharmacology,General Medicine,Physiology
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献