Drug–DNA interaction, a joint DFT-D3/MD study on safranal as an anticancer and DNA nanostructure model

Author:

Azarhazin Ebrahim11,Izadyar Mohammad11,Housaindokht Mohammad Reza11

Affiliation:

1. Computational Chemistry Laboratory, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.

Abstract

In this research, using a combination of quantum mechanics and molecular dynamic (MD) simulations, the interaction of safranal (2,6,6-trimethylcyclohexa-1,3-dien-1-carboxaldehyde) as an anti-cancer drug and Dickerson B-DNA was studied. MD simulations were executed for 35 ns in water. Binding energy analysis in three definite parts of the B-DNA and comparison between different contributions of the binding energy shows that the van der Waals energy part of the interaction is impressive among the standard molecular mechanic energy terms. On the basis of Gibbs energies, it is confirmed that the most important interactions in the safranal complex are related to the A–T and C–G rich regions, which is in agreement with the experimental data. Quantum theory of atoms in molecules and natural bond orbital analyses were applied. A diminution in the electronic chemical potential of the safranal–DNA complex in comparison with the isolated DNA, 0.026 and 0.022 au for the S1 region and 0.012 and 0.017 au for the S2 region, was obtained in the gas phase and water, respectively, which increases the complex stability. An enhancement in the electrophilicity character, during the complexation process, shows the electron charge flux between the safranal and DNA, especially in water. The strengths of the CH⋯O bonds at the center of safranal–DNA interaction were also evaluated. A mean value of 0.06 au for the electron density of the bond critical point of the H⋯O in the complex confirms the H-bond formation during the complexation.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3