Evaluation of the radioprotective ability of cystamine for 150 keV – 500 MeV proton irradiation: a Monte Carlo track chemistry simulation study

Author:

Sepulveda Esteban11,Sanguanmith Sunuchakan11,Meesungnoen Jintana11,Jay-Gerin Jean-Paul11

Affiliation:

1. Département de médecine nucléaire et de radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001, 12ème Avenue Nord, Sherbrooke QC J1H 5N4, Canada.

Abstract

Cystamine, an organic diamino-disulfide, is among the best of the known radiation-protective compounds, although the underlying molecular mechanisms by which it operates remain poorly understood. This study aims to use the aqueous ferrous sulfate (Fricke) dosimeter to evaluate the protective properties of this compound when present during irradiation by fast incident protons in the energy range of 150 keV – 500 MeV, that is, for “linear energy transfer” (LET) values ranging from ∼72.3 to 0.23 keV/μm. The presence of cystamine in irradiated Fricke solutions prevents the oxidation of Fe2+ ions by the oxidizing species produced in the radiolysis of acidic water, resulting in reduced Fe3+ ion yields. A Monte Carlo computer code is used to simulate the radiation-induced chemistry of the studied Fricke–cystamine solutions under aerated conditions while covering a wide range of cystamine concentrations from 5 × 10−7 to 1 mol/L. Results indicate that the protective activity of cystamine is due to its radical-capturing ability, a clear signature of the strong antioxidant profile of this compound. In addition, our simulations show that at low and intermediate concentrations of cystamine, its protective efficiency decreases with increasing LET, which is consistent with previous work. This finding stems from differences in the geometry of the track structures that change from low-LET isolated spherical “spurs” to high-LET dense continuous cylindrical tracks as LET increases. This study concludes that Monte Carlo simulations represent a powerful method for understanding, at the molecular level, indirect radiation damage to complex molecules such as cystamine.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Reference87 articles.

1. Hall, E. J.; Giaccia, A. J. Radiobiology for the Radiologist; Lippincott Williams & Wilkins: Philadelphia, PA, 2006.

2. Cancer and Radiation Therapy: Current Advances and Future Directions

3. Radioprotectors: Chemical, Biological, and Clinical Perspectives; Bump, E. A., Malaker, K., Eds.; CRC Press: Boca Raton, FL, 1998.

4. Radioprotective Agents: Strategies and Translational Advances

5. Sensitizers and protectors of radiation and chemotherapy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3