Effect of Linear Energy Transfer on Cystamine’s Radioprotective Activity: A Study Using the Fricke Dosimeter with 6–500 MeV per Nucleon Carbon Ions—Implication for Carbon Ion Hadrontherapy

Author:

Penabeï Samafou1ORCID,Sepulveda Esteban1,Zakaria Abdullah Muhammad1,Meesungnoen Jintana1,Jay-Gerin Jean-Paul1ORCID

Affiliation:

1. Département de Médecine Nucléaire et de Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001, 12ème Avenue Nord, Sherbrooke, QC J1H 5N4, Canada

Abstract

(1) Background: Radioprotective agents have garnered considerable interest due to their prospective applications in radiotherapy, public health medicine, and situations of large-scale accidental radiation exposure or impending radiological emergencies. Cystamine, an organic diamino–disulfide compound, is recognized for its radiation-protective and antioxidant properties. This study aims to utilize the aqueous ferrous sulfate (Fricke) dosimeter to measure the free-radical scavenging capabilities of cystamine during irradiation by fast carbon ions. This analysis spans an energy range from 6 to 500 MeV per nucleon, which correlates with “linear energy transfer” (LET) values ranging from approximately 248 keV/μm down to 9.3 keV/μm. (2) Methods: Monte Carlo track chemistry calculations were used to simulate the radiation-induced chemistry of aerated Fricke–cystamine solutions across a broad spectrum of cystamine concentrations, ranging from 10−6 to 1 M. (3) Results: In irradiated Fricke solutions containing cystamine, cystamine is observed to hinder the oxidation of Fe2+ ions, an effect triggered by oxidizing agents from the radiolysis of acidic water, resulting in reduced Fe3+ ion production. Our simulations, conducted both with and without accounting for the multiple ionization of water, confirm cystamine’s ability to capture free radicals, highlighting its strong antioxidant properties. Aligning with prior research, our simulations also indicate that the protective and antioxidant efficiency of cystamine diminishes with increasing LET of the radiation. This result can be attributed to the changes in the geometry of the track structures when transitioning from lower to higher LETs. (4) Conclusions: If we can apply these fundamental research findings to biological systems at a physiological pH, the use of cystamine alongside carbon-ion hadrontherapy could present a promising approach to further improve the therapeutic ratio in cancer treatments.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference101 articles.

1. Halperin, E.C., Wazer, D.E., Perez, C.A., and Brady, L.W. (2019). Perez & Brady’s Principles and Practice of Radiation Oncology, Wolters Kluwer. [7th ed.].

2. Cancer and radiation therapy: Current advances and future directions;Baskar;Int. J. Med. Sci.,2012

3. Radioprotective agents to prevent cellular damage due to ionizing radiation;Smith;J. Transl. Med.,2017

4. Hall, E.J., and Giaccia, A.J. (2019). Radiobiology for the Radiologist, Wolters Kluwer. [8th ed.].

5. Sensitizers and protectors of radiation and chemotherapy;Poggi;Curr. Probl. Cancer,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3