Decreased liver triglyceride content in adult rats exposed to protein restriction during gestation and lactation: roles of hepatic lipogenesis and lipid utilization in muscle and adipose tissue

Author:

Mendez-Garcia Claudia1,Trini Afsana1,Browne Veron1,Kochansky Christopher J.2,Pontiggia Laura3,D’mello Anil P.1

Affiliation:

1. Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, 600 South 43rd Street, Philadelphia, PA 19104, USA.

2. Pharmacokinetics, Pharmacodynamics, and Drug Metabolism (PPDM), Merck & Co., Inc. P.O. Box 4, 770 Sumneytown Pike, WP75A-203, West Point, PA 19486, USA.

3. Department of Mathematics, Physics, and Statistics, University of the Sciences in Philadelphia, 600 South 43rd Street, Philadelphia, PA 19104, USA.

Abstract

Protein restriction throughout pregnancy and lactation reduces liver triglyceride (TG) content in adult male rat offspring. The study determined the contribution of hepatic lipogenesis to the reduction in liver TG content. Rats received either control or protein-restricted diets throughout pregnancy and lactation. Offspring were sacrificed on day 65. Hepatic fatty acid uptake and de novo fatty acid and TG biosynthesis were similar between control and low-protein (LP) offspring. These results indicate that hepatic lipogenesis cannot mediate the decrease in liver TG content in LP offspring. We then determined whether increased lipid utilization in adipose tissue and muscle was responsible for the decrease in liver TG content. There was suggestive evidence of increased sympathetic nervous system tone in epididymal adipose tissue of LP offspring that increased fatty acid uptake, TG lipolysis, and utilization of fatty acids in mitochondrial thermogenesis. Measurement of similar parameters demonstrated that such alterations do not occur in gastrocnemius muscle, another major lipid-utilizing tissue. Our results suggest that the decrease in liver TG content in LP offspring is likely due to increased diversion of fatty acids to white and brown adipose tissue depots and their enhanced utilization to fuel mitochondrial thermogenesis.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3