Abnormal amounts of intracellular calcium regulatory proteins in SHRSP.Z-Leprfa/IzmDmcr rats with metabolic syndrome and cardiac dysfunction

Author:

Kagota Satomi1,Maruyama Kana1,Tada Yukari1,Wakuda Hirokazu1,Nakamura Kazuki2,Kunitomo Masaru2,Shinozuka Kazumasa1

Affiliation:

1. Department of Pharmacology II, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya 663-8179, Japan.

2. Department of Pharmacology I2, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien Kyuban-cho, Nishinomiya 663-8179, Japan.

Abstract

Metabolic syndrome is known to increase the risk of abnormal cardiac structure and function, which are considered to contribute to increased incidence of cardiovascular disease and mortality. We previously demonstrated that ventricular hypertrophy and diastolic dysfunction occur in SHRSP.Z-Leprfa/IzmDmcr (SHRSP fatty) rats with metabolic syndrome. The aim of this study was to investigate the possible mechanisms underlying abnormal heart function in SHRSP fatty rats. The amount of sarcoplasmic reticulum Ca2+-ATPase (SERCA) 2a, phospholamban (PLB) protein, and Ser16-phosphorylated PLB was decreased in cardiomyocytes from SHRSP fatty rats compared with those from control Wistar–Kyoto rats at 18 weeks of age, and the PLB-to-SERCA2a ratio was increased. Left ventricular developed pressure was unchanged, and coronary flow rate and maximum rate of left ventricular pressure decline (−dP/dt) was decreased in SHRSP fatty rats. Treatment with telmisartan reversed the abnormalities of PLB amount, coronary flow rate, and −dP/dt in SHRSP fatty rats. These results indicate that abnormal amounts of intracellular Ca2+ regulatory proteins in cardiomyocytes, leading to reduced intracellular Ca2+ reuptake into the sarcoplasmic reticulum, may play a role in the diastolic dysfunction in SHRSP fatty rats and that these effects are partially related to decreased coronary circulation. Telmisartan may be beneficial in protecting against disturbances in cardiac function associated with metabolic syndrome.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3