Do different tendons exhibit the same response following chronic exposure to statins?

Author:

Oliveira L.P.1,Vieira C.P.2,Marques P.P.3,Pimentel E.R.1

Affiliation:

1. Department of Structural and Functional Biology, Institute of Biology, University of Campinas – UNICAMP, Campinas, SP, Brazil.

2. Department of Pharmacology, Medical Sciences College, University of Campinas – UNICAMP, Campinas, SP, Brazil.

3. Department of Biochemistry, Federal University of Alfenas – Unifal, Alfenas, MG, Brazil.

Abstract

Over the past few years, a number of cases of tendon injuries associated with statin therapy have been reported. In this study, we assessed whether statins can affect the extracellular matrix (ECM) of the deep digital flexor tendon (DDFT) and patellar tendon (PT). Wistar rats were assigned to groups treated with atorvastatin (A20, A80), treated with simvastatin (S20, S80), and control. Zymography, Western blotting for collagen I, non-collagenous proteins (NCP), glycosaminoglycans (GAGs), and hydroxyproline quantifications were performed. DDFT findings: NCP were increased in A20 and A80; higher concentration of hydroxyproline was found in S80; levels of GAGs was increased in all statin-treated groups; collagen I was increased in S80 and pro-MMP-2 activity was reduced in A80, S20, and S80. PT findings: NCP were reduced in A20, A80, and S80; GAGs was reduced in A80 and S20; collagen I was increased in A20 and pro-MMP-2 activity was reduced in the S20. Both the statins provoked marked changes in both tendons. All these changes may make the tendons more prone to microdamage and ruptures. Therefore, a better understanding of the behavior of the tendon ECM components under statin therapy may provide important insights into the mechanisms behind statin-induced tendon injuries.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3