Lipophilic statins prevent matrix metalloproteinase-mediated cartilage collagen breakdown by inhibiting protein geranylgeranylation

Author:

Barter Matt J,Hui Wang,Lakey Rachel L,Catterall John B,Cawston Tim E,Young David A

Abstract

ObjectiveTo investigate if statins prevent cartilage degradation and the production of collagenases and gelatinases in bovine nasal and human articular cartilage after proinflammatory cytokine stimulation.MethodsIn a cartilage degradation model, the effects of several statins were assessed by measuring proteoglycan degradation and collagen degradation, while collagenolytic and gelatinolytic activity in culture supernatants were determined by collagen bioassay and gelatin zymography. The production of matrix metalloproteinases (MMPs) in cartilage and chondrocytes were analysed by real-time reverse transcriptase PCR and immunoassay. Cytokine-induced signalling pathway activation was studied by immunoblotting.ResultsSimvastatin and mevastatin significantly inhibited interleukin 1 (IL-1)+oncostatin M (OSM)-induced collagen degradation; this was accompanied with a marked decrease in collagenase and gelatinase activity from bovine nasal cartilage. The cholesterol pathway intermediate mevalonic acid reversed the simvastatin-mediated protection of cartilage degradation, and the expression and production of collagenase (MMP-1 and MMP-13) and gelatinase (MMP-2 and MMP-9). Statins also significantly decreased MMP-1 and MMP-13 expression in human articular cartilage and chondrocytes stimulated with IL-1+OSM, and blocked the activation of critical proinflammatory signalling pathways required for MMP expression. The loss of the isoprenoid intermediate geranylgeranyl pyrophosphate due to statin treatment accounted for the inhibition of MMP expression and signalling pathway activation.ConclusionsThis study shows, for the first time, that lipophilic statins are able to block cartilage collagen breakdown induced by proinflammatory cytokines, by downregulating key cartilage-degrading enzymes. This demonstrates a possible therapeutic role for statins in acting as anti-inflammatory agents and in protecting cartilage from damage in joint diseases.

Publisher

BMJ

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology,Immunology and Allergy,Rheumatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3