Diabetes-related sex differences in the brain endothelin system following ischemia in vivo and in human brain endothelial cells in vitro

Author:

Abdul Yasir11,Li Weiguo11,Vargas Juan D.11,Grant Emily11,He Lianying11,Jamil Sarah11,Ergul Adviye11

Affiliation:

1. Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA.

Abstract

The endothelin (ET) system has been implicated to contribute to the pathophysiology of cognitive impairment and stroke in experimental diabetes. Our goals were to test the hypotheses that (1) circulating and (or) periinfarct ET-1 levels are elevated after stroke in both sexes and this increase is greater in diabetes, (2) ET receptors are differentially regulated in the diabetic brain, (3) brain microvascular endothelial cells (BMVEC) of female and male origin express the ETA receptor subtype, and (4) diabetes- and stroke-mimicking conditions increase ET-1 levels in BMVECs of both sexes. Control and diabetic rats were randomized to sham or stroke surgery. BMVECs of male (hBEC5i) and female (hCMEC/D3) origin, cultured under normal and diabetes-mimicking conditions, were exposed to normoxia or hypoxia. Circulating ET-1 levels were higher in diabetic animals and this was more pronounced in the male cohort. Stroke did not further increase plasma ET-1. Tissue ET-1 levels were increased after stroke only in males, whereas periinfarct ET-1 increased in both control and diabetic females. Male BMVECs secreted more ET-1 than female cells and hypoxia increased ET-1 levels in both cell types. There was sexually dimorphic regulation of ET receptors in both tissue and cell culture samples. There are sex differences in the stroke- and diabetes-mediated changes in the brain ET system at the endothelial and tissue levels.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3