Porphyromonas gingivalis infection upregulates the endothelin (ET) system in brain microvascular endothelial cells

Author:

Karakaya Eda12,Abdul Yasir12,Chowdhury Nityananda3,Wellslager Bridgette3,Jamil Sarah12,Albayram Onder14,Yilmaz Özlem3ORCID,Ergul Adviye14ORCID

Affiliation:

1. Departments of Pathology & Laboratory Medicine, 29425, Charleston, SC, USA, Medical University of South Carolina

2. Ralph H. Johnson Veterans Affairs Medical Center, 29401-5799, Charleston, SC, USA

3. Departments of Oral Health Sciences, Medical University of South Carolina, 29425-5070, Charleston, SC, USA

4. Departments of Neurosciences, 29425, Medical University of South Carolina, Charleston, SC, USA

Abstract

Endothelin-1 (ET-1), the most potent vasoconstrictor identified to date, contributes to cerebrovascular dysfunction and brain ET-1 levels were shown to be related to Alzheimer's disease and related dementias (ADRD) progression. ET-1 also contributes to neuroinflammation, especially in infections of the central nervous system. Recent studies causally linked chronic periodontal infection with an opportunistic anaerobic bacterium Porphyromonas gingivalis (Coykendall et al.) Shah & Collins to AD development. Thus, the goal of the study was to determine the impact of P. gingivalis infection on the ET system and cell senescence in brain microvascular endothelial cells. Cells were infected with a multiplicity of infection 50 P. gingivalis with and without extracellular ATP-induced oxidative stress for 24 h. Cell lysates were collected for analysis of endothelin A receptor (ETA)/endothelin B receptor (ETB) receptor as well as senescence markers. ET-1 levels in cell culture media were measured with enzyme-linked immunosorbent assay. P. gingivalis infection increased ET-1 (pg/mL) secretion, as well as the ETA receptor expression, whereas decreased lamin A/C expression compared to control. Tight junction protein claudin-5 was also decreased under these conditions. ETA or ETB receptor blockade during infection did not affect ET-1 secretion or the expression of cell senescence markers. Current findings suggest that P. gingivalis infection may compromise endothelial integrity and activate the ET system.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3