Development of a novel rationally designed antibiotic to inhibit a nontraditional bacterial target

Author:

Dibrov Pavel1,Dibrov Elena23,Maddaford Thane G.23,Kenneth Melissa2,Nelson Jordan2,Resch Craig1,Pierce Grant N.23

Affiliation:

1. Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.

2. Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada.

3. Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.

Abstract

The search for new nontraditional targets is a high priority in antibiotic design today. Bacterial membrane energetics based on sodium ion circulation offers potential alternative targets. The present work identifies the Na+-translocating NADH:ubiquinone oxidoreductase (Na+-NQR), a key respiratory enzyme in many microbial pathogens, as indispensible for the Chlamydia trachomatis infectious process. Infection by Chlamydia trachomatis significantly increased first H+ and then Na+ levels within the host mammalian cell. A newly designed furanone Na+-NQR inhibitor, PEG-2S, blocked the changes in both H+ and Na+ levels induced by Chlamydia trachomatis infection. It also inhibited intracellular proliferation of Chlamydia trachomatis with a half-minimal inhibitory concentration in the submicromolar range but did not affect the viability of mammalian cells or bacterial species representing benign intestinal microflora. At low nanomolar concentrations (IC50 value = 1.76 nmol/L), PEG-2S inhibited the Na+-NQR activity in sub-bacterial membrane vesicles isolated from Vibrio cholerae. Taken together, these results show, for the first time, that Na+-NQR is critical for the bacterial infectious process and is susceptible to a precisely targeted bactericidal compound in situ. The obtained data have immediate relevance for many different diseases caused by pathogenic bacteria that rely on Na+-NQR activity for growth, including sexually transmitted, pulmonary, oral, gum, and ocular infections.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Reference23 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3