Strength properties of ultra-soft kaolin

Author:

Sahdi Fauzan1,Gaudin Christophe2,White David J.2

Affiliation:

1. Civil Engineering Department, Faculty of Engineering, Universiti Malaysia Sarawak, Kota Samarahan.

2. Centre for Offshore Foundation Systems, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Perth, Australia.

Abstract

Geotechnical design considerations for offshore pipelines, foundations, and submarine slides involve assessment of the strength of fine-grained soils and the degradation of that strength with disturbance and remoulding. For offshore pipelines and slides, the relevant strength may be very low (a few kilopascals or lower), relating to near-surface soils and high levels of remoulding including the entrainment of additional water. It is commonly acknowledged that soils exhibit a loss of strength when disturbed, but it is not clear how the degradation properties vary with liquidity index. To address this uncertainty, this paper describes a series of centrifuge tests on kaolin samples consolidated from slurries with an initial voids ratio of 4.0. A total of 81 cyclic T-bar tests were conducted in samples with shear strengths ranging from 0.08 to 1.7 kPa (reflecting different stages of consolidation and in situ total stresses). Large-strain consolidation numerical analyses were used to assist the interpretation of the T-bar test results. The results demonstrate that the soil ductility (a parameter controlling the rate of strength degradation) can be linearly correlated to the liquidity index. The proposed ductility–liquidity index correlation is subsequently coupled with a previously published sensitivity–liquidity index relationship for natural clays to establish a model for the strain-softening behaviour observed in a T-bar test as a function of consolidation. In turn, because the sensitivity is a function of the liquidity index, the intact soil strength is linked to the remoulded strength obtained from laboratory (e.g., fall cone or miniature vane test) and simple index tests. These provide an improved basis to characterize softening effects for inclusion in simulations of submarine slide runout and models for soil–structure interactions that involve intense remoulding.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3