Overburden geochemical signature of the Lac des Iles platinum group element deposit, northwestern Ontario, Canada

Author:

Barnett Peter J

Abstract

Many previously published studies of the behaviour of Pt and Pd in till and soils have been done in areas of complex stratigraphy or very thin overburden cover, making the interpretation of soil results difficult because of the many variables associated with these settings. At the Lac des Iles mine site in northwestern Ontario, there are excellent exposures of the overburden in a series of exploration trenches. Glacial dispersal trains can be observed in till (C horizon) geochemistry (e.g., Ni, Cr, Cu, and Co). Regional geochemical dispersal trains of elements, such as Ni, Cr, Mg, and Co associated with the North Lac des Iles intrusion, can be detected for about 4 km beyond the western margin of the Mine Block intrusion. Entire dispersal trains range from 5 to 7 km in length and about 1 to 2 km in width. The dispersal of North Lac des Iles intrusion rock fragments tends to mask the response of the Mine Block intrusion. Dispersal trains of Pt and Pd are not well defined and tend to be very short, <1 km in length, due to the initial low concentrations of these elements in C-horizon till samples from the Lac Des Iles area. An exception to this is the Pd dispersal train originating from the high-grade zone that is up to 3 km long. Pd, Pt, Ni, and Cu appear to be moving both within and out of the soil system downslope into surface and shallow groundwater. It is suggested that these elements, to varying degrees, are moving in solution. Airborne contamination from mine operations of the humus has adversely affected the ability to determine the effectiveness of humus sampling for mineral exploration at Lac des Iles. The airborne contamination likely influences the geochemical results from surface water, shallow groundwater, and near-surface organic bog samples, particularly for the elements Pd and Pt.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3