Relativistic hybrid density functional calculations of indirect nuclear spin–spin coupling tensors — Comparison with experiment for diatomic alkali metal halides,

Author:

Bryce David L.12,Autschbach Jochen12

Affiliation:

1. Department of Chemistry and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, ON K1N 6N5, Canada.

2. Department of Chemistry, State University of New York at Buffalo, New York 14260-3000, USA.

Abstract

The accurate calculation of the isotropic (Jiso) and anisotropic (ΔJ) parts of indirect nuclear spin–spin coupling tensors is a stringent test for quantum chemistry, particularly for couplings involving heavy isotopes where relativistic effects and relativity – electron correlation cross terms are expected to play an important role. Experimental measurements on diatomic molecules in the gas phase offer ideal data for testing the success of computational approaches, since the data are essentially free from intermolecular effects, and precise coupling anisotropies may be reliably extracted in favourable cases. On the basis of available experimental molecular-beam coupling-tensor parameters for diatomic alkali metal halides, we tabulate known values of Jiso and, taking rotational–vibrational corrections to the direct dipolar coupling constant into account, precise values of ΔJ are determined for the ground rovibrational state. First-principles calculations of the coupling tensors were performed using a recently developed program based on hybrid density functional theory using the two-component relativistic zeroth-order regular approximation (ZORA). Experimental trends in Jiso and ΔJ are reproduced with correlation coefficients of 0.993 and 0.977, respectively. Periodic trends in the coupling constants and their dependence on the product of the atomic numbers of the coupled nuclei are discussed. Finally, the hybrid functional method is also successfully tested against experimental data for a series of polyatomic xenon fluorides and group-17 fluorides.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3