Characterization of indirect 31P-31P spin-spin coupling and phosphorus chemical shift tensors in pentaphenylphosphinophosphonium tetrachlorogallate, [Ph3P-PPh2][GaCl4]

Author:

Gee Myrlene,Wasylishen Roderick E,Ragogna Paul J,Burford Neil,McDonald Robert

Abstract

Phosphorus chemical shift and 31P,31P spin-spin coupling tensors have been characterized for pentaphenylphosphinophosphonium tetrachlorogallate, [Ph3P-PPh2][GaCl4], using solid-state 31P NMR spectroscopy. Spectra obtained with magic-angle spinning yield the isotropic value of the indirect spin-spin coupling, |1J(31P,31P)iso|, 323 ± 2 Hz, while 2D spin-echo and rotational resonance experiments provide the effective dipolar coupling constant, Reff, 1.70 ± 0.02 kHz, and demonstrate that Jiso is negative. Within experimental error, the effective dipolar coupling constant and Jiso are unchanged at –120°C. The anisotropy in 1J(31P,31P), ΔJ, has been estimated by comparison of Reff and the value of the dipolar coupling constant, RDD, calculated from the P—P bond length as determined by X-ray diffraction. It is concluded that |ΔJ| is small, with an upper limit of 300 Hz. Calculations of 1J(31P,31P) for model systems H3P-PH+2 and (CH3)3P-P(CH3)+2 using density functional theory as well as multiconfigurational self-consistent field theory (H3P-PH+2) support this conclusion. The experimental spin-spin coupling parameters were used to analyze the 31P NMR spectrum of a stationary powder sample and provide information about the phosphorus chemical shift tensors. The principal components of the phosphorus chemical shift tensor for the phosphorus nucleus bonded to three phenyl groups are δ11 = 36 ppm, δ22 = 23 ppm, and δ33 = –14 ppm with an experimental error of ±2 ppm for each component. The components are oriented such that δ33 is approximately perpendicular to the P—P bond while δ11 forms an angle of 31° with the P—P bond. For the phosphorus nucleus bonded to two phenyl groups, the principal components of the phosphorus chemical shift tensor are δ11 = 23 ppm, δ22 = –8 ppm, and δ33 = –68 ppm with experimental errors of ±2 ppm. In this case, δ33 is also approximately perpendicular to the P—P bond; however, δ22 is close to the P—P bond for this phosphorus nucleus, forming an angle of 13°. The dihedral angle between the δ33 components of the two phosphorus chemical shift tensors is 25°. Results from ab initio calculations are in good agreement with experiment and suggest orientations of the phosphorus chemical shift tensors in the molecular frame of reference.Key words: Nuclear magnetic resonance spectroscopy, phosphorus chemical shift tensors, 31P-31P J-coupling tensors, density functional theory, multiconfigurational self-consistent field theory, phosphinophosphonium salts.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3