Author:
Gee Myrlene,Wasylishen Roderick E,Ragogna Paul J,Burford Neil,McDonald Robert
Abstract
Phosphorus chemical shift and 31P,31P spin-spin coupling tensors have been characterized for pentaphenylphosphinophosphonium tetrachlorogallate, [Ph3P-PPh2][GaCl4], using solid-state 31P NMR spectroscopy. Spectra obtained with magic-angle spinning yield the isotropic value of the indirect spin-spin coupling, |1J(31P,31P)iso|, 323 ± 2 Hz, while 2D spin-echo and rotational resonance experiments provide the effective dipolar coupling constant, Reff, 1.70 ± 0.02 kHz, and demonstrate that Jiso is negative. Within experimental error, the effective dipolar coupling constant and Jiso are unchanged at 120°C. The anisotropy in 1J(31P,31P), ΔJ, has been estimated by comparison of Reff and the value of the dipolar coupling constant, RDD, calculated from the PP bond length as determined by X-ray diffraction. It is concluded that |ΔJ| is small, with an upper limit of 300 Hz. Calculations of 1J(31P,31P) for model systems H3P-PH+2 and (CH3)3P-P(CH3)+2 using density functional theory as well as multiconfigurational self-consistent field theory (H3P-PH+2) support this conclusion. The experimental spin-spin coupling parameters were used to analyze the 31P NMR spectrum of a stationary powder sample and provide information about the phosphorus chemical shift tensors. The principal components of the phosphorus chemical shift tensor for the phosphorus nucleus bonded to three phenyl groups are δ11 = 36 ppm, δ22 = 23 ppm, and δ33 = 14 ppm with an experimental error of ±2 ppm for each component. The components are oriented such that δ33 is approximately perpendicular to the PP bond while δ11 forms an angle of 31° with the PP bond. For the phosphorus nucleus bonded to two phenyl groups, the principal components of the phosphorus chemical shift tensor are δ11 = 23 ppm, δ22 = 8 ppm, and δ33 = 68 ppm with experimental errors of ±2 ppm. In this case, δ33 is also approximately perpendicular to the PP bond; however, δ22 is close to the PP bond for this phosphorus nucleus, forming an angle of 13°. The dihedral angle between the δ33 components of the two phosphorus chemical shift tensors is 25°. Results from ab initio calculations are in good agreement with experiment and suggest orientations of the phosphorus chemical shift tensors in the molecular frame of reference.Key words: Nuclear magnetic resonance spectroscopy, phosphorus chemical shift tensors, 31P-31P J-coupling tensors, density functional theory, multiconfigurational self-consistent field theory, phosphinophosphonium salts.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献