OXIDATION OF INORGANIC SULFUR COMPOUNDS BY WASHED CELL SUSPENSIONS OF THIOBACILLUS FERROOXIDANS

Author:

Landesman J.,Duncan D. W.,Walden C. C.

Abstract

Oxidation of various inorganic sulfur compounds by Thiobacillus ferrooxidans was studied, and conditions necessary for maximum respiration rates were established. Optimum oxidation of elemental sulfur occurred at pH 5.0 and gave a Qo2(N) of 726; oxidation of thiosulfate gave a maximum Qo2(N) of 514 at pH 4.0; tetra- and tri-thionate, when oxidized at pH 6.0, gave a maximum Qo2(N) of 103 and 113, respectively. Polythionates accumulated during thiosulfate oxidation, but did not during oxidation of elemental sulfur. Metallic sulfide minerals were oxidized optimally as follows: chalcopyrite, pH 2.0, maximum Qo2(N) 3200; bornite, pH 3.0, maximum Qo2(N) 450; pyrite, pH 2.0, maximum Qo2(N) 1600. Maximum temperature for oxidation of all inorganic sulfur compounds tested was 40 C.The effect of a variety of organic compounds on sulfur oxidation is presented.T. ferrooxidans requires growth adaptation on iron for maximum respiration on that substrate; however, sulfur oxidation is not inducible. Iron and sulfur can be oxidized simultaneously, giving a rate equal to the sum of the maximum rates of oxidation of the two substrates individually.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3