Middle Eocene sedimentary and volcanic infilling of an evolving supradetachment basin: White Lake Basin, south-central British Columbia

Author:

McClaughry Jason D,Gaylord David R

Abstract

The middle Eocene White Lake and Skaha formations in the White Lake Basin, British Columbia record the sedimentary and volcanic infilling of a supradetachment basin that developed during the latter stages of Shuswap metamorphic core complex exhumation. The 1.1-km-thick White Lake Formation is characterized by volcanogenic sediment gravity flow, fluvial, and sheetflood facies interbedded with volcanic deposits. Facies relations suggest White Lake strata accumulated on coalesced, west-sloping alluvial fans that drained an active volcanic center. The overlying 0.3-km-thick Skaha Formation records increased tectonism and mass-wasting. Pervasively shattered Skaha avalanche, slide, and sheetflood deposits accumulated on alluvial fans, shed from hanging-wall and footwall sources exposed along the Okanagan Valley fault. Clast compositions of the White Lake and Skaha formations record alluvial and tectonic stripping that locally eliminated hanging-wall blocks. Mylonite clasts in upper Skaha beds imply significant Okanagan Valley fault footwall uplift during the middle Eocene and syntectonic erosion of the Shuswap metamorphic core complex. The syntectonic sedimentary record preserved within the White Lake Basin elucidates the relations and timing between core complex exhumation and extensional tectonism in this region. The White Lake and Skaha formations are the apparent age equivalent of the Klondike Mountain Formation of northern Washington (USA.). White Lake Basin strata, however, are more complexly interstratified, post-depositionally disrupted, and contain a more complete record of core complex unroofing. Variations in the spatial distributions and textural and compositional character of middle Eocene strata in this area underscore the need to exercise care when developing regional-scale sedimentary–tectonic–volcanic models.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3