Detecting cool-climate Riesling vineyard variation using unmanned aerial vehicles and proximal sensors

Author:

Dorin Briann1ORCID,Reynolds Andrew G.1,Lee Hyun-Suk1,Carrey Marilyne2,Shemrock Adam3,Shabanian Mehdi4

Affiliation:

1. Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada

2. Environmental Sustainability Research Centre, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada

3. AirTech UAV Solutions Inc., Inverary, ON, Canada

4. Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada

Abstract

The ability to detect and respond to vineyard spatial variation can lead to improved management—a practice known as precision viticulture. The goal of this study was to determine if remote sensors can enhance precision viticulture applications by detecting vineyard spatial variation. The hypothesis was that differences in vine spectral reflectance, as detected by remote sensors, would be associated with variations in viticultural variables due to known relationships with vine size, structure, and pigmentation. Riesling grapevines were geolocated within six commercial vineyards across Niagara, Ontario. Water status, vine size, winter hardiness, virus titer, yield components, and berry composition were measured on these vines. Remote sensing technologies subsequently collected multispectral data by unmanned aerial vehicles and by proximal sensing technology (GreenSeeker™), which were transformed into the Normalized Difference Vegetation Index (NDVI). Direct relationships between NDVI and vine size, water status, yield, berry weight, and titratable acidity were observed, as well as inverse relationships between NDVI and Brix and potentially volatile terpenes. Remote sensing demonstrated the ability to detect vineyard areas differing in measures of vine health, yield, and berry composition in certain sites and years; however, more research is needed to determine when these technologies should be used for precision viticulture applications.

Funder

Ontario Ministry of Food and Agriculture

Publisher

Canadian Science Publishing

Subject

Control and Optimization,Electrical and Electronic Engineering,Control and Systems Engineering,Automotive Engineering,Aerospace Engineering,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3