Abstract
Preparation of microtubule protein in the presence or absence of glycerol results in differences in polymerization properties and content of microtubule associated proteins. The variation in properties appears to result from the reduced proportion of microtubule associated proteins in preparations made with glycerol. I have used the colchicine binding assay to monitor recovery of active tubulin and have found that a single factor can account for the difference. During the in vitro assembly of microtubules from the crude brain homogenate, glycerol promotes polymerization of the bulk of the tubulin, while less than half is incorporated into microtubules in the absence of glycerol. Assembly of partly purified microtubule protein is not enhanced by glycerol however. Microtubule associated proteins present in the crude homogenate are almost completely incorporated into the microtubules regardless of the presence of glycerol, and their high content in glycerol-free preparations appears to be the trivial result of low tubulin recovery. The high affinity of microtubule associated proteins for the assembled microtubules has other consequences for in vitro studies of microtubule assembly, and critical concentration plots to determine the polymerization equilibrium constant can be distorted unless the preparation used has a high content of microtubule associated proteins.
Publisher
Canadian Science Publishing
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献